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We employ the full FENE-P model of the hydrodynamics of a dilute polymer solution
to derive a theoretical approach to drag reduction in wall-bounded turbulence.
We recapture the results of a recent simplified theory which derived the universal
maximum drag reduction (MDR) asymptote, and complement that theory with a
discussion of the cross-over from the MDR to the Newtonian plug when the drag
reduction saturates. The FENE-P model gives rise to a rather complex theory due to
the interaction of the velocity field with the polymeric conformation tensor, making
analytic estimates quite taxing. To overcome this we develop the theory in a computer-
assisted manner, checking at each point the analytic estimates by direct numerical
simulations (DNS) of viscoelastic turbulence in a channel.

1. Introduction
The onset of turbulence in fluid flows is accompanied by a significant increase

in the drag (Lumley 1969; Sreenivasan & White 2000). This drag is a hindrance
to the transport of fluids and to the navigation of ships. It is of interest therefore
that the addition of long chain polymers to wall-bounded turbulent flows can result
in a significant reduction in the drag. The basic experimental knowledge of the
phenomenon had been reviewed and classified by Virk (1975); the amount of drag
depends on the characteristics of the polymer and its concentration, but cannot
exceed a universal asymptote known as the ‘maximum drag reduction’ (MDR) curve
which is independent of the polymer’s concentration or its characteristics. When the
concentration is not large enough, the mean velocity profile as a function of the
distance from the wall follows the MDR curve for a while and then crosses back
to a Newtonian-like profile, cf. figure 1(a). The coordinates used in the figure are
the standard Prandtl wall units (with p′ being the pressure gradient and L half the
channel height, V + ≡ V/

√
p′L, y+ ≡

√
p′LyL/νs , and νs the kinematic viscosity).

Recently the nature of the MDR and the mechanism leading to its establishment
were rationalized, using a phenomenological theory in which the role of the polymer
conformation tensor was modelled by an effective viscosity (L’vov et al. 2004). The
effective viscosity was found to attain a self-consistent profile, increasing linearly with
the distance from the wall. With this profile the reduction in the momentum flux
from the bulk to the wall overwhelms the increased dissipation that results from the
increased viscosity. Thus the mean momentum increases in the bulk, and this is how
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Figure 1. (a) Mean normalized velocity profiles as a function of the normalized distance from
the wall during drag reduction. The data points from numerical simulations (filled circles)
and the experimental points (open circles) represent the Newtonian results. The squares repre-
sent the maximum drag reduction (MDR) asymptote. The dashed curve represents the theory
discussed in the paper which agrees with the universal MDR. The arrow marks the crossover
from the viscous layer to the Newtonian log-law of the wall. The filled triangles and open
triangles represent the cross-over, for intermediate concentrations of the polymer, from the
MDR asymptote to the Newtonian plug. (b) Mean velocity profiles for the Newtonian and for
the viscoelastic simulations with Reτ = 125, where Reτ is the Reynolds number based on the
friction velocity. Solid line: Newtonian, dashed line: viscoelastic. The straight lines represent
the classical von-Kármán log-law. Notice that in this simulation the modest Reynolds number
results in an elastic layer in the region y+ � 25.
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drag reduction is realized. In De Angelis et al. (2004) it was shown by direct numerical
simulations (DNS) that Navier–Stokes flows with viscosity profiles that vary linearly
with the distance from the wall do indeed show drag reduction in close correspondence
with the phenomenon seen in full viscoelastic simulations. The aim of this paper is to
complement the simplified theory with a derivation of the same results on the basis
of a full viscoelastic model of the hydrodynamics of dilute polymer solutions. Such
a derivation loses some of the simplicity of the phenomenological theory, but on
the other hand it clarifies the role of the polymer conformation tensor in providing
viscosity-like contributions. In addition, we will offer a discussion of the non-universal
saturation of drag reduction as a function of concentration, length of polymer and
relaxation time in various conditions of experimental interest. In § 2 we consider the
FENE-P model of viscoelastic flows and briefly review the evidence for drag reduction
in DNS of this model. In § 3 we employ the FENE-P model to derive a statistical
theory of drag reduction in wall-bounded turbulence. In § 4 we use the theory to
predict the cross-over from the universal MDR to the Newtonian plug when the
conditions differ from those necessary for attaining the MDR. In § 5 we present a
summary and a discussion.

2. Equations of motion for viscoelastic flows and drag reduction
Viscoelastic flows are represented well by hydrodynamic equations in which the

effect of the polymer enters in the form of a ‘conformation tensor’ Rij (r, t) which
stems from the ensemble average of the dyadic product of the end-to-end distance
of the polymer chains (Bird et al. 1987; Beris & Edwards 1994). A successful model
that had been employed frequently in numerical simulations of turbulent channel
flows is the FENE-P model (Bird et al. 1987). Flexibility and finite extensibility of the
polymer chains are reflected by the relaxation time τ and the Peterlin function P (r, t)
which appear in the equation of motion for Rij :

∂Rαβ

∂t
+ (Uγ ∇γ )Rαβ =

∂Uα

∂rγ

Rγβ + Rαγ

∂Uβ

∂rγ

− 1

τ
[P (r, t)Rαβ − δαβ], (2.1)

P (r, t) =
(
ρ2

m − 1
)/(

ρ2
m − Rγγ

)
. (2.2)

Here and below repeated indices are summed. In these equations ρ2
m refers to the

maximal of the trace Rγγ in units of ρ2
m. Since in most applications ρm � 1 the Peterlin

function can also be written approximately as

P (r, t) ≈ (1/(1 − αRγγ ), (2.3)

where α = ρ−2
m . In turn the conformation tensor appears in the equations for fluid

velocity Uα(r, t) as an additional stress tensor:

∂Uα

∂t
+ (Uγ ∇γ )Uα = −∇αp + νs∇2Uα + ∇γ Tαγ + Fα, (2.4)

Tαβ(r, t) =
νp

τ
[P (r, t)Rαβ(r, t) − δαβ]. (2.5)

Here νs is the viscosity of the pure fluid, Fα is the forcing and νp is a viscosity
parameter which is related to the concentration of the polymer, i.e. νp/νs ∼ cp where
cp is the volume fraction of the polymer. We note however that the tensor field can

be rescaled to get rid of the parameter α in the Peterlin function, R̃αβ = αRαβ , with
the only consequence being rescaling the parameter νp accordingly. Thus the value
of the concentration can be calibrated against the experimental data. Also, in most
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numerical simulations, the term PRαβ is much larger than unity. Therefore, in the
theoretical development below we shall use the approximation

Tαβ ∼ νp

τ
PRαβ. (2.6)

These equations were simulated by computer in a channel or pipe geometry,
reproducing the phenomenon of drag reduction in experiments. The most basic
characteristic of the phenomenon is the increase of fluid throughput in the channel
for the same pressure head, compared to the Newtonian flow. This phenomenon is
demonstrated in figure 1(b) taken from De Angelis et al. (2003). As one can see the
simulation is limited compared to experiments; the Reynolds number is relatively low,
and the MDR is not attained. Nevertheless the phenomenon is shown, and we will
be able to use the simulation to asses and support the steps taken in the theoretical
development.

3. The derivation of the MDR
3.1. The momentum balance equation and closure approximations

Consider the fluid velocity Uα(r) as a sum of its (time) average and a fluctuating part:

Uα(r, t) = Vα(y) + uα(r, t), Vα(y) ≡ 〈Uα(r, t)〉. (3.1)

For a channel of large length and width all the averages, and in particular Vα(y) →
V (y)δαy , are functions of y only. The parameters that enter the theory are the mean
shear S(y), the Reynolds stress W (y), the kinetic energy K(y) and the mean conforma-
tion tensor 〈Rαβ〉; the first three are defined respectively as

S(y) ≡ dV (y)/dy, W (y) ≡ −〈uxuy〉, K(y) = 〈uαuα〉/2.

Taking the long-time average of (2.4), and integrating the resulting equation along
the y coordinate produces an exact equation for the momentum balance:

W + νS +
νp

τ
〈PRxy〉(y) = p′(L − y). (3.2)

The right-hand side is simply the rate at which momentum is produced by the pressure
head, and on the left-hand side we have the Reynolds stress which is the momentum
flux, the viscous dissipation of momentum and the rate at which momentum is
transferred to the polymers. Near the wall it is permissible to neglect the term p′y
on the right-hand side for y � L. In order to proceed, we need to use (2.1) in its
averaged form:

∂

∂y
〈uyRij 〉 = −1

τ
〈PRij 〉 + 〈Rik∂kUj 〉 + 〈Rjk∂kUi〉. (3.3)

Using 〈∂kUj 〉 ≡ Sδjxδky , we can rewrite equation (3.3) in the form

1

τ
〈PRij 〉 = 〈Rik〉Sδjxδky + Φij (3.4)

where Φij ≡ −∂y 〈uyRij 〉+ 〈Rik∂kuj 〉+ 〈Rjk∂kui〉. In particular we obtain the following
equations for Rxx, Rxy:

〈PRxx〉 = τS 〈Rxy〉 + τΦxx, (3.5)

〈PRxy〉 = τS 〈Ryy〉 + τΦxy. (3.6)
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Figure 2. (a) Comparison of the term S〈Rxy〉 (thick solid line) to the terms present in
Φxx in equation (3.5), namely 〈∂y(uyRxx)〉 (dashed line), 2〈Rxx∂xux〉 (dotted line), 2〈Rxy∂yux〉
(dash-dotted line), 2〈Rxz∂zux〉(dash-double-dotted line). Note that up to y+ ∼ 30 S〈Rxy〉 is
much larger than any other contribution. As (a) but (b) for S〈Ryy〉 (thick solid line)
compared with 〈∂y(uyRxy)〉 (dashed line), 〈Rxx∂xuy〉 (dotted line), 〈Ryy∂yux〉 (dash-dotted
line), 〈−Rxy∂zuz〉 (dash-double-dotted line), 〈Rxz∂zuy〈 (long-dashed line) and 〈Ryx∂zux〉 (solid
line). The numerical simulation is performed for τ = 25.0 and friction Reynolds number
Reτ = 125.

In this paper, our basic idea is to recognize that in limit of large Deborah number
τS the terms Φxx and Φxy on the right-hand sides of (3.5) and (3.6) can be neglected.
This statement can be checked against DNS of the FENE-P model. A description
of the DNS is given in De Angelis et al. (2003). In figure 2(a) we compare the term
SRxy to the different contributions to Φxx , while in figure 2(b) we compare SRyy to
the terms which contribute to Φxy . In both cases, the term proportional to S is much
larger than any other contribution in the viscoelastic layer, which allows us to neglect
the terms Φxx and Φxy in (3.5) and (3.6) respectively, i.e. we obtain

〈PRxx〉 = τS〈Rxy〉, (3.7)

〈PRxy〉 = τS〈Ryy〉. (3.8)

Using equations (3.7), (3.8), we can rewrite our momentum balance equation in the
form

ν(y)S + W = p′L, (3.9)

with the ‘effective viscosity’ being identified as

ν(y) ≡ νs + c1νp〈Ryy〉. (3.10)

It is a crucial and important observation that, while the stretching of polymers is
given by the trace of Rij , the effective viscosity appearing in the momentum balance
depends only on 〈Ryy〉.

3.2. The energy balance equation

Next we derive the balance equation for energy. For this purpose, we will employ
a phenomenological equation describing the balance between turbulent energy
production WS and turbulent energy dissipation. The energy dissipation is estimated
differently in the viscous boundary layer near the wall and in the bulk of the turbulent
flow. In the absence of polymers, the balance equation is

aν
K

y2
+ b

K3/2

y
= WS (3.11)
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where K ≡ 1
2

∑
i u

2
i . In equation (3.11) the second term on the left-hand side represent

the standard Kolmogorov-type estimate of the energy flux and dissipation as the
typical energy at distance y from the wall over the typical eddie turnover time y/

√
K .

When there are no polymers acting in the system, equation (3.11) can be used with
the momentum equation to obtain a closed set of equations describing the momentum
flux and the mean shear, which in Prandtl units is

S+ + W+ = 1, (3.12)

δ+2

y+2
+

W+3/2

κNy+
= W+S+, (3.13)

where κN ≡ b/c3
N is the von-Kármán constant, δ+ ≡

√
a/cN , while cN ≡ K/W is

assumed to be a constant fixed by experimental data. For y+ much larger than the vis-
cous boundary layer near the wall (i.e. δ+), equations (3.12), (3.13) provide the well-
known von-Kármán solution for wall-bounded turbulent flow. For a suitable choice
of c2

N , equations (3.12), (3.13) can be considered rather good in reproducing the whole
profile of the mean flow V +(y+), from y+ = 0 to the von-Kármán profile. This is
shown in figure 1(a) as a solid black line. In the following, we consider equation (3.11)
as a good candidate to represent the basic feature of the balance between turbulent
production and turbulent energy dissipation.

In order to generalize equation (3.11) for the FENE-P model, we note that the
overall dissipation of energy due to polymer stretching can be rigorously derived from
equations (2.1) and (2.3). The final result is

Ep =
νp

2τ 2
〈P 2Rγγ 〉, (3.14)

where Rγγ ≡ Rxx + Ryy + Rzz.
As stated in (3.1), we represent the velocity field as the sum of its mean and the

fluctuation, and consider separately the balance equation for the mean energy V 2 and
for the turbulent energy 〈u2〉. The former yields an equation identical to (3.2) but
multiplied by S:

WS + νsS
2 +

νp

τ
〈PRxy〉(y)S = p′LS. (3.15)

Thus the contribution of the polymer to the dissipation of the velocity fluctuations,
denoted as εp , is finally of the form

εp =
νp

2τ 2
〈P 2(Rxx + Ryy + Rzz) − 2〈PRxy〉Sτ 〉. (3.16)

It is important to realize that this equation embodies an important cancellation. To
see this we return to (2.1), multiply it by P , use (3.7) and derive

1

τ
〈P 2Rxx〉 = 2〈PRxy〉S. (3.17)

Thus, there is an exact cancellation in (3.16) between the first and the fourth terms.
We can thus safely proceed to write the balance equation for the turbulent energy in
the presence of polymer stretching:

aν
K

y2
+ b

K3/2

y
+

νp

2τ 2
〈P 2(Ryy + Rzz)〉 = WS. (3.18)

Finally, we refer again to our DNS results to assess the relative importance of 〈Ryy〉
and 〈Rzz〉: these are very close to each other throughout the region of concern in the
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Figure 3. (a)
√

K/y+ (circles) as a function of y+ as obtained in the DNS of the FENE-P
model. The continuous line shows C2 〈P 〉 /τ (C2 ∼ 6.5) computed for the same numerical

simulation. Note that outside the viscous boundary layer y+ � 10, the estimate
√

K/y+ ∼ 〈P 〉 /τ
is quite well satisfied. (b) 〈Rxx〉 (crosses), 〈Ryy〉 (circles) and 〈Rzz〉 (black continuous line) as
obtained by direct numerical of the FENE-P model. We have multiplied 〈Ryy〉 and 〈Rzz〉 by
10 and by 6, respectively, to improve readability. Note that 〈Rzz〉 ∼ 〈Ryy〉 for almost all values
of y+ and that 〈Ryy〉 ∼ y (represented by the thin line) up to y+ ∼ 50.

channel, as shown in figure 3. We therefore can keep only one of them at the expense
of the introduction yet another constant of the order of unity:

aν
K

y2
+ b

K3/2

y
+

c3νp

τ 2
〈P 2Ryy〉 = WS. (3.19)

To bring the equation into a more convenient form, we recall that the coil–stretch
transition is expected to occur when the effective relaxation time τ/P of the polymer
is of the order of the typical time scale for the velocity fluctuations, y/

√
K(y); the

coil–stretch transition is a necessary condition for a strong interaction of the polymers
with the flow, and thus of drag reduction. In figure 3(a) we plot

√
K/y and 〈P 〉 /τ to

show the quality of our estimate. This indicates that the third term on the left-hand
side of (3.19) can be estimated as

c3νp

τ 2
〈P 2Ryy〉 ∼=

c3νp

τ 2
〈P 〉2 〈Ryy〉 = c4νp〈Ryy〉K(y)

y2
. (3.20)

Thus, the energy balance equation can be also written in terms of an effective viscosity,
in a similar way to the momentum balance equation, namely

aν̃(y)
K

y2
+ b

K3/2

y
= WS, (3.21)

ν̃(y) ≡ νs + c4νp〈Ryy〉. (3.22)

Comparing with (3.10) we see that νp〈Ryy〉 serves as the effective viscosity in this
problem.

Let us summarize our finding and the basic assumptions made so far. First, we have
used equations (3.7) and (3.8), neglecting Φxx and Φxy which are considered small
for De → ∞. We supported this approximation by showing in figure 2 the relative
importance of the various terms as obtained in a DNS of the FENE-P model. Next,
we assume that the term

√
K/y appearing in the energy balance equation can be

estimated as P/τ , i.e. as the effective relaxation time of the polymers. This assumption
is based on the idea that, at large enough Deborah number, the polymers undergo a
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coil–stretch transition. Finally, we employ a rather straightforward approximation by
computing Ryy +Rzz as c3Ryy , with c3 a suitable constant of order 1. This approxima-
tion is based on the fact that Ryy and Rzz have a similar behaviour as function
of y, supported by DNS of the FENE-P equations and shown in figure 3. Based
on the above discussion, we reach the important conclusion that the overall effect
of polymers in turbulent boundary layers is physically equivalent to introducing an
effective viscosity proportional to Ryy .

3.3. The MDR asymptote

At this point we have the same balance equations that were employed by L’vov
et al. (2004), and the derivation of the MDR, following the same reasoning, is
briefly reviewed in the following. As in the Newtonian theory one needs to add a
phenomenological relation between W (y) and K(y),

W (y) = c2
V K(y), (3.23)

whereas in the Newtonian theory we have the rigorous bound cV � 1 (L’vov et al.
2004).

Using (3.23) we can estimate W = c2
V K ∼ y2 〈P 〉2

/τ 2 and, consequently for small
y and large value of 〈P 〉 /τ (i.e. at the MDR) the first term on the left-hand side
of (3.9) is dominant and we find (assuming that the kinematic viscosity is negligible)
c1νp〈Ryy〉 ≈ p′L/S(y). Substituting this in the first term on the left-hand side of (3.21),
we obtain the estimate

S(y) ≈ c5p
′L/y, (3.24)

which leads to a logarithmic solution for V (y). The derivation of the MDR in reduced
variables gives the final result

V +(y+) =
1

κV

ln(eκV y+), (3.25)

where e is the Neper number and κV ≡ cV /(cNy+
v ). In this expression y+

v is the
cross-over point between the viscous region and the von-Kármán log law of the
wall in the Newtonian problem. As a consequence of our derivation, we obtain that
Ryy ∼ 1/S ∼ y, i.e. the effective viscosity should grow linearly with respect to distance
from the wall. In figure 3 we show that 〈Ryy〉 ∼ y, as predicted. Let us remark that
the work done so far enables us to the FENE-P equations in a physical way and
to understand how the different components of the conformation tensor Rij play
different roles in the mechanism of drag reduction. The next step is to understand the
effect of varying the concentration of polymers.

4. Saturation of drag reduction and cross-over from the MDR to the
Newtonian plug

Experimentally mean velocity profile is seen to follow the MDR up to some point
y+

V after which it crosses back to a logarithmic profile with the same slope as the
Newtonian flow. To measure the amount of drag reduction one can introduce a
dimensionless drag reduction parameter

Q ≡ y+
V

y+
N

− 1. (4.1)

The Newtonian flow is then a limiting case of the viscoelastic flow corresponding to
Q = 0.
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We expect a cross over from the MDR asymptote back to the Newtonian plug
when the basic assumptions on the relative importance of the various terms in the
balance equations lose their validity, i.e. when (i) the turbulent momentum flux W

becomes comparable with the total momentum flux p′L, or (ii) the turbulent energy
flux bK3/2/y becomes of the same order as the turbulent energy production WS.

Using the estimates (3.24) and K = c2
V W ∼ y2 〈P 〉2

/τ 2, one can show that both these
conditions give the same cross-over point yV , namely

yV � τ
√

p′L

〈P 〉 . (4.2)

Let us denote τ̃ (y) ≡ τ/ 〈P (y)〉 the effective nonlinear polymer relaxation time. Then
condition (4.2) can be also rewritten as

S(yV )τ̃ (yV ) � 1. (4.3)

In writing this equation we use the fact that the cross-over point also belongs to
the edge of the Newtonian plug where S(y) ≈

√
p′L/y. The left-hand side of this

equation is simply the local Deborah number (the product of local mean shear and
local effective polymer relaxation time). Thus, the cross-over to the Newtonian plug
ocuurs at the point, where the local Deborah number decreases to ∼ 1. We expect that
this result is correct for any model of elastic polymers, not only for the FENE-P
model considered here.

To understand how the cross-over point yV depends on the polymer concentration
and other parameters, we need to estimate the mean value of the Peterlin function
〈P 〉. Note that a change in the concentration cp = νp/ν0 → λνp/ν0 is equivalent, in
the FENE-P equations, to Rij → λRij and α → α/λ. Therefore, the limit cp → ∞ is
equivalent to α → 0, i.e. to P → 1, while the limit cp → 0 implies α → ∞ and therefore
even a small amount of stretching will produce a large value of P . Thus the basic
properties of the FENE-P model predict that P → ∞ for small concentration and
P → 1 for large enough concentration (see also Benzi et al. 2004a). Using (4.2) we
immediately see that for small concentration yV → 0 while for large concentration yV

reach its maximum value given by τ
√

p′L. In the following, we discuss how the same
exact results are obtained by using the theory discussed in the previous section.

Using (2.3) and the estimate 〈R〉 = 〈Rxx + Ryy + Rzz〉 ∼ 〈Rxx + 2Ryy〉, it follows
from (3.8) and (3.7) that

〈Rxx〉 � (Sτ̃ )2〈Ryy〉,

and at the cross-over point (4.3)

〈Rxx〉 � 〈Ryy〉 , 〈R〉 � 3〈Ryy〉.

The dependence of 〈Ryy〉 on y in the MDR region follows from (3.19) and (3.24):

〈Ryy〉 � τ̃ 2WS

νp

� y
√

p′L

νp

.

Then at the cross-over point y = yV

〈P 〉 � 1

1 − 3αyV

√
p′L

/
νp

.
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Substituing this estimation into (4.2) gives the final result

yV =
Cτ

√
p′L

1 + αp′Lτ
/
νp

. (4.4)

Here C is a constant of the order of unity. Finally, introducing the dimensionless
concentration of polymer

c̃p ≡ νp

α ν0

, (4.5)

one can write the denominator in (4.4) as

1 +
αp′Lτ

νp

= 1 +
1

c̃p

p′Lτ

ν0

= 1 +
De

c̃p

,

where

De ≡ p′Lτ

ν0

(4.6)

is the (global) Deborah number. Then for the dimensionless cross-over point
y+

V ≡ yV

√
p′L

/
ν0 one obtains

y+
V =

CDe

1 + De/c̃p

. (4.7)

There are two non-trivial predictions which can be tested by using equation (4.7). For
small values of c̃p , y+

V is linear in c̃p , i.e. drag reduction has a linear relation with the
polymer concentration. On the other hand, for large value of c̃p , the FENE-P model
becomes equivalent to the Oldroyd B model (P = 1) (Benzi et al. 2004a) and one
should observe an increase of drag reduction proportional to De. Indeed, in numerical
simulations when the Deborah number De was changed systematically, cf. Yu et al.
(2001), the cross-over was observed to depend on De in a manner consistent with
(4.7). The other limit when c̃p is very small was discussed in full detail in Benzi et al.
(2004). The main result of Benzi et al. (2004b) is that the drag reduction parameter
Q is given by

Q = l3pcpN3
p cp small, Re large, (4.8)

where Np is the degree of polymerization (the number of monomers per molecule)
and lp is the linear scale of the monomer. This prediction was tested in Benzi et al.
(2004b) by comparing with experiments with DNA as the drag reducing agent, with
excellent agreement between theory and experiments.

We can thus reach conclusions about the saturation of drag reduction in various
limits of the experimental conditions, in agreement with experiments and simulations.

5. Conclusions
In this paper we present a theoretical framework aimed at understanding drag

reduction for wall-bounded turbulent flow in dilute polymer solution. We based our
results on a few approximations and the idea that the polymers undergo a coil–
stretch transition for large enough polymer length and Reynolds number. DNS of
the FENE-P model confirm the very good quality of the approximations made.

There are two major results obtained in the paper. First, we highlight the different
physical role played by the different components of the conformational tensor Rij ,
and in particular we show that 〈Ryy〉 appears in the balance equations as an effective
viscosity. It is important to realize that it is this component and not Rxx , which is in
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fact much larger (by a factor of De2), that enters the theory. Indeed, one simple and
non-trivial prediction of our theory is that 〈Ryy〉 ∼ y close to the wall. It is known that
the overall stretching of the polymers (i.e. the trace of Rij ) decreases as a function
of y, but this is mainly due to the decay of 〈Rxx〉. Nevertheless, Ryy is predicted to
increase linearly with y, in very good agreement with DNS. Second, we are able to
predict how drag reduction depends on polymer concentration and how eventually,
for large enough concentration, the drag reduction reaches its limiting value given by
the so called MDR asymptote.

In our discussions, we employed very simple balance equations for the momentum
and energy production and energy dissipation in wall-bounded turbulent flow. We
propose therefore that most of our results, if not all, are model independent.

This work was supported in part by the European Commission under a TMR
grant, the US-Israel Binational Science Foundation, and the Minerva Foundation,
Munich, Germany.
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